
AyuSynk IOS SDK

AyuSynkSdk encapsulates the core functionalities found in the AyuShare app and

allows you to seamlessly integrate AyuSynk devices into your iOS applications.

The AyuSynkSdk is designed to be easily integrated using Swift Package Manager.

Requirements

Minimum Deployment : iOS 12

Supported Destinations : iPhone and iPad

Required Permissions

For Connecting Devices via Bluetooth

To enable the functionality of AyuSynk devices, the following permissions must be

added to your app's Info.plist file:

1. Privacy - Bluetooth Always Usage Description : This permission is

necessary for establishing seamless and continuous connections with Bluetooth

devices.

2. Privacy - Bluetooth Peripheral Usage Description : This permission allows

your device to interact with nearby Bluetooth devices.

Usage

You can incorporate the AyuSynkSdk library into any iOS project by adding it to your

project and using its public API functions.

For generating diagnosis reports, you'll need a specific clientId provided by

AyuDevices. Refer to the #online-live-streaming section for more details. If you have a

clientId, add it to your app using the instructions in the Add-Client-Id section.

Instructions

Step-by-step instructions for using

AyuSynkSdk:

Step 1: Open Your Xcode Project

Launch Xcode, open your existing iOS project, or create a new one.

Step 2: Adding Your SDK via SPM

1. In Xcode, go to "File" > "Swift Packages" > "Add Package Dependency..."

2. In the "Choose Package Repository" dialog, enter the 'PACKAGE_URL' provided

by AyuDevices.

3. Click "Next" and select the appropriate version.

4. Choose your target, then click "Finish."

Please note that our SDK relies on the Coreplot library to display waveforms. Ensure

you add the Coreplot library to your project. Sample code includes a pod for adding

Coreplot via CocoaPods.

Step 3: Import and Use the SDK

In your Swift source files, import the SDK using:

import AyuSynkSDK

Now, you can start using the features and functionality provided by the SDK in your

app.

Step 4: Build and Run

Build and run your app. The SDK functionality is now available for use within your app.

Sample Project

To quickly get started, follow these steps to run the sample project:

Step 1: Navigate to the Sample Folder

Navigate to the sample project folder within your app's directory.

Step 2: Install Dependencies

1. Open a Terminal and run the following command to install necessary

dependencies using CocoaPods:

pod install

This command downloads and installs CorePlot for the sample project.

Step 3: Open the Workspace

Open the project using the AyuSynk_IOS_SDK.xcworkspace file instead of the

.xcodeproj file. CocoaPods integrates additional libraries into the Xcode workspace.

Step 4: Run the Sample App

Open the sample app in Xcode, select your target (usually a physical device), and click

the "Run" button to build and run the sample project on your device.

You're all set to explore the features and functionality of the AyuSynk iOS SDK within

the sample project.

For a comprehensive demonstration of the SDK capabilities, refer to the AyuShare app,

which is also based on this SDK.

Features

AyuSynkSdk offers the following features:

1. List available AyuSynk devices

2. Connect to AyuSynk devices

3. Stream audio

4. Waveform UI

5. Record audio

6. Save audio

7. Get AyuSynk battery status

8. Get AyuSynk signal strength

9. Share audio

10. Denoise audio

11. Diagnosis Report Generation

Diagnosis Report Generation

To generate diagnosis reports, you need a clientId from AyuDevices. Refer to the #Get-

sdk-access section for more details. If you have a clientId, add it to your app using the

instructions in the Add-Client-Id section.

1. Report Generation Options:

1. Generate Using Cloud URL

2. Upload and Generate

2. Generate Using Cloud URL

1. Upload recorded wav files to a public cloud storage.

2. Set a listener using the setDiagnosisReportUpdateListener() function to

receive the diagnosis report once generated.

3. Pass the cloud URL of the wav file to the generateDiagnosisReport()

function, as shown below:

3. Upload and Generate

1. Save the recorded audio in wav file format.

2. Set a listener using the setDiagnosisReportUpdateListener() function to

receive the diagnosis report once generated.

3. Pass the wav file to the generateDiagnosisReport() function, as shown

below. Refer to MainViewController.swift for the

generateReportButtonClicked() function:

NOTE

1. it is recommended to send proper heart/lung location if known for better results.

2. Based on our research in past years we recommend to record sound for 10 sec

which is enough for doctor to diagnose properly

3. Report generation can take up to ~15-20 secs for 10 sec audio. More time will be

taken if the size of recording exceeds then recommended 10 sec audio.

Add client id

AyuSynk.verify(clientId: "YOUR_CLIENT_ID", verificationListener: self)

let soundData = SoundData(fileLink: "https://your-cloud-storage-link.wav", location

let soundFile = SoundFile(soundData: soundData, soundType: SoundType.HEART)

AyuSynk.generateDiagnosisReport(soundFile: soundFile)

let soundData = SoundData(fileUrl: fileURL, locationName: LocationType.Heart.aortic

let soundFile = SoundFile(soundData: soundData, soundType: Sound)

AyuSynk.generateDiagnosisReport(soundFile: soundFile)

API

You can use AyuSynkSdk as an SDK by embedding into your IOS application and

calling its public API functions described below.

The whole API is defined in the AyuSynk class, thus you will need to import only this

single class once you have added framework in your project:

import AyuSynkSDK

Verify User

No. ReturnType Function Description

01 Void
verify(clientId: String, verificationListener:

VerificationListener?)

Used to verify

client

API for interacting with Device

No. ReturnType Function Description

01 Bool isBluetoothEnabled()
Used to check if bluetooth is

enabled

02 Void
setDeviceScanListener(listener:

DeviceScanListener)

Set this listener to get callbacks

when using

startScan()/stopScan() methods

03 Void startScan()
Starts scanning for nearby

device

04 Void stopScan()
Stops scanning for nearby

device.

05 Void connect(deviceUUID: String)

Connect to device by passing the

uniqueIdentifier of the device.

deviceUUID is obtained in

Device object of

DeviceScanListener method

06 DeviceConnectionState isDeviceConnected()

Returns DEVICE_CONNECTED

if device is connected else

DEVICE_DISCONNECTED

07 Void
setAyuDeviceListener(listener:

AyuDeviceListener)

Set this listener to get callbacks

for device connection, strength

and battery value changes

No. ReturnType Function Description

08 DeviceStrength getDeviceStrength()

Returns current signal strength.

Recommended to always refer

values returned via

AyuDeviceListener

09 Int getCurrentBatteryLevel()

Returns current battery level.

Recommended to always refer

values returned via

AyuDeviceListener

10 Void disconnect()
Disconnect all existing

connections

Waveform API

No. ReturnType Function Description

01 Void
setupVisualizerView(view:CPTGraphHostingView,

color: CGColor)

Set AyuVisualizer for

plotting audio

waveform. import

CorePlot to get

CPTGraphHostingView

Record and Playback API

No. ReturnType Function Description

01 Void setFilter(filter: FilterType)
Used to apply different

denoising on audio stream

02 Void
setRecordingTimeLimit(recordingTimeLimit:

Int)

Used to set the recording

time limit

03 Void
setRecorderListener(listener:

RecorderListener)

Used to get various

recording callback when

using record or stream

features

04 Void startRecording()
Starts recording the current

audio stream

05 Void pauseRecording() Used to pause recording

06 Void clearRecordedData()

Used to discard any

recorded audio before it is

completed.

07 Data? getAudioData(recordID: String) Get recorded data

08 Void playAudio(recordID: String) Used to play recorded audio

09 Void stopAudioPlayback() Stop playback

10 Void
changePlaybackSpeed(speed:

PlayBackSpeeds)

Change playback speed to

VERY_SLOW, SLOW and

NORMAL

No. ReturnType Function Description

11 Void resetSpeed() Resets speed to NORMAL

12 Void muteAudio(mute : Bool) Mute audio

Report Generation API

No. ReturnType Function Description

01 URL?
generateFile(fileName: String, recordID:

String)

Generate a wav file in local

storage and returns file url

02 URL?
generateFile(fileName: String, sampleData:

Data)

Generate a wav file in local

storage and returns file url

03 Void
setDiagnosisReportUpdateListener(listener:

DiagnosisReportUpdateListener)

Set this listener to get

callbacks for report

generation

04 Void
generateDiagnosisReport(soundFile:

SoundFile)

To generate diagnosis reports

from recorded sound file.

You need to have valid

clientId to generate reports.

Miscellaneous API

No. ReturnType Function Description

01 Void close()
Releases all the allocated memory by AyuSynkSdk. Should call

before closing app

For any further queries. Write an email to ayuanalytics@ayudevices.com specifying

subject as " <YOUR_COMPANY_NAME> - Query for IOS SDK "

